POSTED Oct 1

2025 Applied Science Internship - Reinforcement Learning & Optimization (Machine Learning) - United States, PhD Student Science Recruiting

at AmazonUS, WA, Seattle

Share:

Unlock the Future with Amazon Science!

Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more.

At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models.

Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.

Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology.

Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA.

Key job responsibilities
We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling

In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges.

The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment.

A day in the life
- Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation.
- Design, development and evaluation of highly innovative ML models for solving complex business problems.
- Research and apply the latest ML techniques and best practices from both academia and industry.
- Think about customers and how to improve the customer delivery experience.
- Use and analytical techniques to create scalable solutions for business problems.

Please mention that you found this job on Moaijobs, this helps us get more companies to post here, thanks!

Related Jobs

Amazon
2025 Applied Science Intern (Computer Vision), Amazon International Machine Learning
AU, VIC, Melbourne
Meta
Applied AI Research Scientist - Reinforcement Learning
Menlo Park, CA
Meta
Applied AI Research Scientist - Reinforcement Learning
Menlo Park, CA
Meta
Postdoctoral Researcher, Reinforcement Learning (PhD) - Paris
Paris, France
Meta
Research Scientist Intern, Reinforcement Learning (PhD)
Paris, France