How can we improve the shopping experience on Amazon.com by tailoring what we display on our pages based on customer interests and preferences? How do we use generative models to help us innovate in different ways to enhance the shopping experience? How do we generate personalized content that helps customers shop at scale?
Our team's stated missions is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations." Recommendations at Amazon is a way to help customers discover products. Our team strives to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day.
Using Amazon’s large-scale computing resources, you will build and deploy text and generation models that help customers shop on Amazon. You will ask research questions about customer behavior, build state-of-the-art models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML and generative AI. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for a passionate, hard-working, and talented Applied Scientist who has experience building mission critical, high volume applications that customers love. You will have an opportunity to make an enormous impact on the design, architecture, and implementation of cutting edge products used everyday by people you know.
Our team's stated missions is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations." Recommendations at Amazon is a way to help customers discover products. Our team strives to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day.
Using Amazon’s large-scale computing resources, you will build and deploy text and generation models that help customers shop on Amazon. You will ask research questions about customer behavior, build state-of-the-art models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML and generative AI. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for a passionate, hard-working, and talented Applied Scientist who has experience building mission critical, high volume applications that customers love. You will have an opportunity to make an enormous impact on the design, architecture, and implementation of cutting edge products used everyday by people you know.