Intercom was founded in 2011 to change the standard of customer service online. Our AI-first customer service platform is a totally new way to deliver customer service and is designed to transform the way businesses interact with their customers through AI. We all know that customer service on the internet sucks. It’s slow and impersonal. We help businesses provide instant and exceptional service to their customers and maximize their support agents’ productivity, efficiency, and performance—all through our single AI system. More than 25,000 businesses use Intercom to send millions of messages to millions of customers each month.Intercom has been a long-standing product leader and cultural icon in the technology and startup worlds for more than a decade. We set the pace for our industry and live by our values that allow us to push boundaries, build with speed and intensity, and deliver incredible value to our customers.Join us on our mission to redefine customer service and make internet business personal.
Intercom’s Machine Learning team is responsible for defining new ML features, researching appropriate algorithms and technologies, and rapidly getting first prototypes in our customers’ hands.
We are an extremely product focussed team. We work in partnership with Product and Design functions of teams we support. Our team's dedicated ML backend engineers collaborate with scientists to deeply understand research context, and enable us to move to production fast, often shipping to beta in weeks after a successful offline test.
We are very passionate about applying machine learning technology, and have productized everything from classic supervised models, to cutting-edge unsupervised clustering algorithms, to novel applications of transformer neural networks. We test and measure the real customer impact of each model we deplo
If you excel in scaling backend systems but have a bit less hands-on experience with ML systems (which you happily make up for with your keen interest), we'd love to hear from you! 🌟
What will I be doing?- Taking algorithms which work offline, and putting them in a production setting
- Deeply understand and modify as needed
- Solve hard scalability and optimization problems
- Improving our dev tooling
- Run production ML infrastructure, and evolving it over time
- Build new data infrastructure to enable exploration
- Establish processes for large scale data analyses, model development, validation and implementation
- Work with teammates to measure and iterate on algorithm performance
- Partner deeply with the rest of team, and others, to build excellent ML products
These are meant to be indicative, not hard requirements.
- Excellent pragmatic engineering skills
- Familiar with tools used to write, test, deploy, debug and monitor software
- Comfort owning features from inception to outcome.
- 5+ years experience in a production environment, with contributions to the design and architecture of distributed systems.
- Strong communication skills, both within engineering teams and across disciplines.
- Excellent programming skills
- Comfort with ambiguity
- BSc in Computer Science, or similar knowledge
- ML Ops experience
- GPU, Pytorch, OS internals
- Deep knowledge of AWS services
- Track record shipping ML products
- Large scale ETL
We are a well treated bunch, with awesome benefits! If there’s something important to you that’s not on this list, talk to us!
- Competitive salary and equity in a fast-growing start-up
- We serve lunch every weekday, plus a variety of snack foods and a fully stocked kitchen
- Regular compensation reviews - we reward great work!
- Pension scheme & match up to 4%
- Peace of mind with life assurance, as well as comprehensive health and dental insurance for you and your dependents
- Flexible paid time off policy
- Paid maternity leave, as well as 6 weeks paternity leave for fathers, to let you spend valuable time with your loved ones
- If you’re cycling, we’ve got you covered on the Cycle-to-Work Scheme. With secure bike storage too
- MacBooks are our standard, but we also offer Windows for certain roles when needed.
#LI-Hybrid
Policies
Intercom has a hybrid working policy. We believe that working in person helps us stay connected, collaborate easier and create a great culture while still providing flexibility to work from home. We expect employees to be in the office at least two days per week.
We have a radically open and accepting culture at Intercom. We avoid spending time on divisive subjects to foster a safe and cohesive work environment for everyone. As an organization, our policy is to not advocate on behalf of the company or our employees on any social or political topics out of our internal or external communications. We respect personal opinion and expression on these topics on personal social platforms on personal time, and do not challenge or confront anyone for their views on non-work related topics. Our goal is to focus on doing incredible work to achieve our goals and unite the company through our core values.
Intercom values diversity and is committed to a policy of Equal Employment Opportunity. Intercom will not discriminate against an applicant or employee on the basis of race, color, religion, creed, national origin, ancestry, sex, gender, age, physical or mental disability, veteran or military status, genetic information, sexual orientation, gender identity, gender expression, marital status, or any other legally recognized protected basis under federal, state, or local law.
Is this role not quite what you're looking for? Join our Talent Community to stay connected with us.