Software Engineer, Horizons
Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.
- Design and maintain high-performance data pipelines for processing large-scale code datasets and implementing secure sandboxed execution environments.
- Architect and optimize core reinforcement learning infrastructure, from clean training abstractions to distributed experiment management across GPU clusters. Help scale our systems to handle increasingly complex research workflows.
- Build intuitive developer tools and dashboards for analyzing ML experiments, including real-time visualizations, interactive debugging interfaces, and efficient metrics collection systems that help researchers understand model behavior.
- Drive performance improvements across our stack through profiling, optimization, and benchmarking. Implement efficient caching solutions and debug distributed systems to accelerate both training and evaluation workflows.
- Collaborate across research and engineering teams to develop automated testing frameworks, design clean APIs, and build scalable infrastructure that accelerates AI research.
- 5+ years of industry-related experience
- Are proficient in Python and async/concurrent programming with frameworks like Trio
- Have a strong software engineering background and are interested in working closely with researchers and other engineers
- Enjoy pair programming (we love to pair!)
- Care about code quality, testing, and performance
- Have strong systems design and communication skills
- Are passionate about the potential impact of AI and are committed to developing safe and beneficial systems
- Have experience with virtualization and sandboxed code execution environments
- Have experience with Kubernetes
- Have contributed to major open-source projects
- Have experience with distributed systems or high-performance computing
- Are familiar with a diverse set of technologies and programming language ecosystems
- Formal certifications or education credentials
- Experience with LLMs, reinforcement learning, or machine learning research before
Deadline to apply: None. Applications will be reviewed on a rolling basis.
The expected salary range for this position is:
Location-based hybrid policy: Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.
Visa sponsorship: We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.
We encourage you to apply even if you do not believe you meet every single qualification. Not all strong candidates will meet every single qualification as listed. Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.
How we're differentWe believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time. As such, we greatly value communication skills.
The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.
Come work with us!Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues.